Soil Nutrient Mass Balance Study

Why soil organic matter?

-positively correlated w/ yield amount

-positively correlated w/ yield stability

-positively correlated w/ water holding capacity

Soil Nutrient Mass Balance Study

- 1. What's the status of carbon & nutrient soil stocks?
- 2. Are carbon, nitrogen, and phosphorus soil stocks on the decline?
- 3. Why the uncertainty?

Soil nutrient & carbon stocks:

Balance of inputs and outputs:

nitrogen inputs – nitrogen outputs = Δ soil storage

Two Approaches

nitrogen inputs – nitrogen outputs = Δ soil storage

1. Measure the inputs and outputs inputs – outputs = **Δsoil storage**

2. Measure soil stock at two points in time soil stock at time B – soil stock at time A = Δ soil storage

Significant Uncertainty with Both Approaches

Inputs Minus Outputs

- Not all inputs outputs can be measured
- Inputs and outputs interdependent
- 3. Large year-to-year variability due to climate

Change in Soil Stock

- Changes over time are small relative to stock size (typically <1%) while analytical accuracy ~2-5%
- Huge spatial variability in stock size within a field (30-50%)
- 3. Type II Statistical Errors

Our Approach:

- No manure or erosion
- Phosphorus
 - input output
- Nitrogen
 - input output
 - soil stock in 2009 soil stock in 1999
- Carbon
 - soil stock in 2009 soil stock in 1999

Input-Output Assumptions - Nitrogen

- Three N fertilizer inputs
 - 1. Maximum Return to Nitrogen (economic optimum)
 - 2. \$-1/acre below MRTN
 - 3. \$-1/acre above MRTN
- Fluxes were generally means from the literature with some adjustments based on N input rate

http://extension.agron.iastate.edu/soilfertility/nrate.aspx

IOWA STATE UNIVERSITY
Department of Agronomy

agronomist
applying science to fuel & feed our global society

Nitrogen Balance

Inputs

- Fertilizer
- Biological N Fixation
- Atmospheric Deposit.
- Non-symbiotic Fixation
- Seed

Outputs

- Grain
- Leaching
- Denitrification
- Volatilization

Continuous Corn (Input-Output)

IOWA STATE UNIVERSITY

Corn-Soybean (Input-Output) Partial Balance

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

Department of Agronomy

agronomist
applying science to fuel & feed our global society

O Corn-Soybean

Continuous Corn MRTN (empirically calculated for this site)

Corn-Soybean MRTN (empirically calculated for this site)

MRTN at 0.1 price ratio modeled from the lowa State University N rate calculator (135 lb N/ha for corn-soybeans, 192 lb N/ha for continuous corn).

Nitrogen Fertilizer Input to Maize (Ib N acre⁻¹)

Nitrogen Fertilizer Input to Maize (lb N acre⁻¹)

IOWA STATE UNIVERSITY

O Corn-Soybean

Continuous Corn MRTN (empirically calculated for this site)

Corn-Soybean MRTN (empirically calculated for this site)

MRTN at 0.1 price ratio modeled from the Iowa State University N rate calculator (135 lb N/ha for corn-soybeans, 192 lb N/ha for continuous corn).

Nitrogen Fertilizer Input to Maize (lb N acre⁻¹)

Nitrogen Fertilizer Input to Maize (lb N acre⁻¹)

IOWA STATE UNIVERSITY

O Corn-Soybean

Continuous Corn MRTN (empirically calculated for this site)

Corn-Soybean MRTN (empirically calculated for this site)

MRTN at 0.1 price ratio modeled from the lowa State University N rate calculator (135 lb N/ha for corn-soybeans, 192 lb N/ha for continuous corn).

IOWA STATE UNIVERSITY

O Corn-Soybean

Continuous Corn MRTN (empirically calculated for this site)

Corn-Soybean MRTN (empirically calculated for this site)

MRTN at 0.1 price ratio modeled from the Iowa State University N rate calculator (135 lb N/ha for corn-soybeans, 192 lb N/ha for continuous corn).

Nitrogen Fertilizer Input to Maize
(lb N acre⁻¹)

Nitrogen Fertilizer Input to Maize

(lb N acre-1)

IOWA STATE UNIVERSITY

- Soil organic matter is the largest source for crop N uptake and the largest sink for N fertilizer inputs
- Thus: If soil organic matter stocks decline, water quality improvements become more difficult
- Tremendous variation in soil nitrogen stocks and sustainable nitrogen fertilizer rates remain unexplained
- Long-term nitrogen rate experiments are required to accurately:
 - 1. Assess the status of lowa's soil nutrient stocks
 - 2. Optimize nitrogen fertilizer inputs for environmental quality and agricultural productivity

IOWA STATE UNIVERSITY

i'm an agronomist
agronomist
applying science to fuel & feed our global society

Mike Castellano

515-294-3963 castelmj@iastate.edu

